Latent Quaternionic Geometry

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Latent Quaternionic Geometry

In this article we discuss the interaction between the geometry of a quaternionKähler manifold M and that of the Grassmannian G3(g) of oriented 3-dimensional subspaces of a compact Lie algebra g. This interplay is described mainly through the moment mapping induced by the action of a group G of quaternionic isometries on M . We give an alternative expression for the endomorphisms I1, I2, I3, bo...

متن کامل

Quaternionic Geometry of Matroids

Building on a recent paper [8], here we argue that the combinatorics of matroids are intimately related to the geometry and topology of toric hyperkähler varieties. We show that just like toric varieties occupy a central role in Stanley’s proof for the necessity of McMullen’s conjecture (or g-inequalities) about the classification of face vectors of simplicial polytopes, the topology of toric h...

متن کامل

Geometry of Quaternionic Kähler connections with torsion

The target space of a (4,0) supersymmetric two-dimensional sigma model with Wess-Zumino term has a connection with totally skew-symmetric torsion and holonomy contained in Sp(n).Sp(1), QKT-connection. We study the geometry of QKT-connections. We find conditions to the existence of a QKT-connection and prove that if it exists it is unique. Studying conformal transformations we obtain a lot of (c...

متن کامل

Fano Manifolds, Contact Structures, and Quaternionic Geometry

Let Z be a compact complex (2n+1)-manifold which carries a complex contact structure, meaning a codimension-1 holomorphic sub-bundle D ⊂ TZ which is maximally non-integrable. If Z admits a Kähler-Einstein metric of positive scalar curvature, we show that it is the Salamon twistor space of a quaternion-Kähler manifold (M, g). If Z also admits a second complex contact structure D̃ 6= D, then Z = C...

متن کامل

Generalized Planar Curves and Quaternionic Geometry

Motivated by the analogies between the projective and the almost quaternionic geometries, we first study the generalized planar curves and mappings. We follow, recover, and extend the classical approach, see e.g. [9, 10]. Then we exploit the impact of the general results in the almost quaternionic geometry. In particular we show, that the natural class of H–planar curves coincides with the clas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Tokyo Journal of Mathematics

سال: 2008

ISSN: 0387-3870

DOI: 10.3836/tjm/1219844833